|
【作者简介】陈显友,武汉工程大学管理学院公共管理系教授、博士生导师,主要研究方向为社会保障与社会治理;张瑞杰,武汉工程大学管理学院助理研究员,主要研究方向为公共管理。
【文章来源】《社会建设》2023年第5期
【内容提要】吉林省是我国长期护理保险试点的重点联系省份之一,以吉林省6份长期护理保险政策文本作为研究对象进行政策量化评价,以此评估其长期护理保险试点政策的效果。利用文本挖掘方法和PMC指数模型对政策文本进行分析,根据PMC指数和曲面图比较政策差异发现,6份政策PMC指数均值为8.45,为良好级,总体政策尚可。从具体政策看,1份政策文本达到优秀级,5份达到良好级。但政策时效、激励约束略显不足,政策工具结构不平衡。未来可从中长期政策制度设计、激励机制完善、政策工具结构优化等方面进行改善。
【关键词】长期护理保险;吉林;PMC 指数;政策评价;优化建议
【基金项目】国家社科基金后期资助项目“老年人口流动与老年人口资源开发利用研究”(22FRKB001 );武汉工程大学创新基金“我国长期护理保险试点政策比较分析” (CX2022303 )
【全文链接】https://shjs.ruc.edu.cn/CN/Y2023/V10/I5/37
Quantitative Evaluation and Optimization of the Policy Text of Long-term Care Insurance System in Jilin Province
Chen Xianyou,Zhang Ruijie
Abstract: Jilin Province is one of the key contact provinces in China for the long-term care insurance pilot, and this paper takes six long-term care insurance policy texts in Jilin Province as the research object for quantitative policy evaluation, and analyzes and evaluates the effect of long-term care insurance pilot policies.In this paper, the text mining method and PMC index model are used to analyze the policy text, and the policy differences are compared according to the PMC index and surface plot.The study found that the average PMC index of the six policies was 8.45, which was good, and the overall policy was acceptable.In terms of specific policies, 1 policy text reached the excellent level and 5 policy texts reached the good level.However, the policy timeliness and incentive constraints are slightly insufficient, and the structure of policy tools is unbalanced.It can be improved from the aspects of medium and long-term policy system design, improvement of incentive mechanism, and optimization of policy tool structure.
Keywords: long-term care insurance;Jilin Province;PMC model;policy evaluation;optimization